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by omitting 1, 2, 8, 4, ete. of the first terms and multiplying the sum of the
following terms by the first factor of the denominator of the first term that is
retained and by P.

49. Now, this sequence of differences is more convergent than a decreasing
geometrio progression (§§34, 35). Hence the residues E’, B*, R", ete. decrease
in such a way that they become smaller than any assignable quantity. And as
every one of these residues, having D as common divisor, is a multiple of D, it
follows that this common divisor D is smaller than any assignable quantity,
which makes D = 0. Consequently M : P is & quantity incommensurable with
unity, hence irrational.

50. Hence every time that a circular arc = pfw 18 commensurable with the radius
= 1, hence rational, the tangent of this arc will be ¢ quantity incommensurable with
the radiua, hence irrational. And conversely, every rational tangent is the tangent
of an irrational arc.

51. Now, since the tangent of 45° is rational, and equal to the radius, the arc
of 45°, and hence also the arc of 90°, 180°, 360°, is' incommensurable with the
radius. Hence the circumference of the circle does not stand to the diameler as an
integer to an integer, Thus we have here this theorem in the form of a corollary
to another theorem that is infinitely more universal.

52. Indeed, it is precisely this absolute universality that may well surprise us.

Lambert then goes on to draw consequences from his theorem concerning arcs with
rational values of the tangent. Then he draws an analogy between hyperbolic and trigono-
metric functions and proves from the continued fraction for e* + 1 that e and all its powers
with integral exponents are irrational, and that all rational numbers have irrational natural
logarithms. He ends with the sweeping conjecture that “‘no circular or logarithmic trans-
cendental quantity into which no other transcendental quantity enters can be expressed
by any irrational radieal quantity,” where by “radical quantity’ he means one that is

expressible by such numbers as V2, /8, V4, V2 + V3, and so forth. Lambert does not
prove this; if he had, he would have solved the problem of the quadrature of the cirole. The
proof of Lambert’s conjecture had to wait for the work of C. Hermite (1873), and F. Linde-
mann (1882). See, for instance, H. Weber and J. Wellstein, Encyklopddie der Elementar-
Mathematik (3rd ed.; Teubner, Leipzig, 1809), I, 478-492; G. Hessenberg, Transzendenz
von ¢ und = (Teubner, Leipzig, Berlin, 1912); U. G. Mitchell and M. Strain, “The numbere,”
Osiriz 1 (1936), 476-496.

18 FAGNANO AND EULER. ADDITION THEOREM OF ELLIPTIC
INTEGRALS

Count Giulio Carlo de’Toschi di Fagnano (1682-1766), Spanish consul in his home town of
Sinigaglia (Italy) and an amateur mathematician, published in the Giornali de'letterati
d'Italia for the years 1714-1718 a series of papers on the summation of the ares of certain
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curves, a problem induced by a paper of Johann Bernoulli’s of 1608.' These papers of
Fagnano are reproduced in his Opere mathematiche (2 vols.; Albrighi, Segati & Co., Milan,
Rome, Naples), IT {1911), from which our selection has been translated. In vol. 19 of the
@iornali Fagnano posed the following problem (Opere, 11, 271):

Problem. Let a biquadratic primary parabola, which has as its constituent
equation x* = y, and also a portion of it, be given. We ask that another portion
of the same curve be assigned such that the difference of the two portions be
rectifiable.

It had already been recognized by the brothers Bernoulli that what would be calied eHip-
tic arcs are not rectifiable, but that sums or differences might be representable by arcs of
circles or straight lines. Fagnano gave a solution of his own problem, and generalized it to
a number of cases, all involving elliptic integrals. One of his conclusions, sometimes called
Fagnano's theorem, dates from 1716 and is found in the paper entitled “Teorema da cui si
deduce una nuova misura degli archi elittici, iperbolici, e cicloidali,” Giornali 26 (Opere, I1,
287-292).

Theorem. In the two polynomials below, X and Z, and in equation (1) the
letters k, I, f, g represent arbitrary constant quantities.

I say, in the first place, that if in equation (1) the exponent s expresses the
positive unity [s = +1], then the integral of the polynomial X — Z is equal
to —haz{vV —Jl.

I say, in the second place, that if in the same equation (1) the exponent &
expresses the negative unity [8 = — 1], then the integral of

=V_h
vy

X+ Z=

Here

=d:c\/hx’+l
Vs + g

g BT
VAT

(1) (fha?2?) + (flz®) + (fI2) + () = 0.

! An account of the contributions of Fagnano to this problem can be found in Cantor,
Geschichte, III (2nd. ed., 1901), 485-472, Johann Bernoulli's paper, entitled * Theorema
universale rectificationi linearum curvarum inserviens™ (Universal theorem useful for the
rectification of curved lines), appeared in the Acta Erudilorum of October 1698 (Opera omnia,
I, 249-2563); in it he asked whether there are curves with arcs that are not rectifiable,
but are such that sums or differences of arcs are rectifiable. He claims that the parabols
3a3y = z? has that property. See Belection V.10, note 4.
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The first part of the theorem Fagnano applies to the difference of arcs of an ellipse and of
a cycloid, the second part to the sum of arcs of a hyperbola.

Then, in another article, ‘‘Metodo per misurare la lemniscata,” Giornali 29 (1718; Opere,
11, 293-313), he applied his considerations to the lemniscate, a curve discovered by Jakob
Bernoulli in 1694.3 After a reference to the two brothers Bernoulli, Fagnano continues:

Let the lemniscate be CQACFC [Fig. 1], its semiaxis CA = a; then it is known
that if we take the origin of the abscissa () at the center C and call (y) the
ordinates [le ordinate] normal to the axis, then the nature of the lemniscate is

t -~ “\\
/ \\
! \\
/ !
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\ /
A /
N\ ,I
N /
Fig.1  “~__| .~
N

expressed by this equation: 22 + y* = aVa? — 32 It is also known that if we
call z the indeterminate chord CQ = v'z* + ¥%, then the direct arc

a?dz

00 = [ o=

and the inverse are
aidz 9

4 = arc. A — are. 0Q = f—
¢ ¢= V=

4 The lemniscate waa introduced by Jakob Bernoulli in an article entitled ** Construetio
curvae accessus ob recessus aequabilis’ in the Acte Eruditorum of September 1884 (Operu,
II, 608-612} dealing with elastie curves. Here he discusses the curve with equation
zz 4 yy = aV @z — yy), which curve **of four dimensiona'" has, as he says, a form * jecentis
notae octonari m, seu complicatae in nodum fasciae, sive lemnisci, d'un noeud de ruban
Gallis” (like a lying eightlike figure, folded in & knot of & bundls, or of & lemniscus, & knot
of a French ribbon), lemniskos being a knot in the form of an eight. The curve was soon
known as a lemniscate.

3 Tt was not yet customary to indicate the limits of the integral at the bottom and top of
the integral sign, so that the integrals for arcs C@ and @A look alike. Our modern notation
j': is due to J. Fourier; see his Théorie analytique de la chalewr (Didot, Paris, 1822), 237-

238,
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Take the ellipse ADFNA, of which the minor semiaxis is CF = a, and the
major semiaxis 0D = aV'2, and call z the indeterminate abscissa CH, with its
origin in the center C of the ellipse, and equal to the chord €@ of the lemniscate,
and draw the ordinate HI parallel to the major axis. Then it is already known
that the direct are DI of this ellipse has as its expression

J‘ Va? & 22
dz ———
Va? = 22
and the inverse arc
‘\,I' F] 2
IF = arc. DF — arc. DI = J‘ A A
a? — 22
Finally, take the equilateral hyperbola LM P with semiaxis SM = a [Fig. 2].
If we call £ the indeterminate radius [applicata] SO, then it is known that if we
take the arc MO starting from the center M this arc is expressed as follows:

£ dt
Vit~ gt
s
M
o
Fig.2 t P

Theorem 1. Let the two equations written below be (1) and (2); then I say that if
we take the first of them, then also the other is valid:

Va? 4 22
T e—— 3

(1) t=am—

(2)

J‘ a? dz J‘d ‘\/a’+zz $#dt b
Vat — 2 \/a’—az Vit —agt G

The truth of this theorem can be shown by differentiation, and substituting
for t and d¢ their values in terms of z and dz taken from equation (1).

Corollary. If in the lemniscate the chord 0@ = z, and in the ellipse the abscissa
CH is also = z, and in the equilateral hyperbola LM P the central radius
SO = t, and if we assign to ¢ its value expressed in equation (1} and substitute
in equation (2) the arcs of the curves in terms of their expressions already indi-
cated in the statements above, we obtain

arc. 0Q = are. DI + arc. MO =

nl&
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Fagnano has in Theorem II another substitution which leads (see Figs. 1 and 2) to
arc. Q4 = arc. I.F + arc. ML - lz\/a“ -z},

and then goes on to

Theorem LIL. If we consider equalion (7) and equation (8) below, then I say that,
given the first one, the ather also is valid:

. T,
g Ll v
8 afdz a?du
& f7=-l-v==

Trom these equations Fagnano again derives some expressions for the arc. Other pairs are
(Opere, 11, 304-309):

Vizvi-o vde  dzV2

v= 2 ’ Vi—-z V142

I=‘\/1$z Fde dzV'2

Vite 7 Vit

Wi LT A dz 2 du
o _uve _-vVi-vI-Zh —_— = ’ 10
© iow : oA VoW -

Vi=8 VW A-z dz —2dt
12 ==V1-VI-4, = 13
i V2 2 ? vi—z# Vv1-# .

The last equations allow Fagnano to duplicate an arc of the lemniscate, and 8o to divide the
quadrant of the lemniscate into three equal parts; } = 2 then gives z = V_3 + 2V3.

He also shows how to divide the quadrant into five equal parts.

Two more sets of equations show how to duplicate an arc of the lemniscate. Fagnano
concludes that he can divide the quadrant of the lemniscate therefore into 2 x 3™, 3 x 2™,
5 x 2™ equal parts. «And this is a new and singular property of my curve.”

Much later, Fagnano republished his papers in his Produzioni matematiche (Pesaro, 1760;
reprinted as vol. I of the Opere matematiche). When this book reached the Berlin Academy
in 1751, Euler, who was asked to express an opinion on it, quickly grasped the importance
of Fagnano’s transformations for the integration of a number of differential equations of
particular kind, involving radicals. In his «« Observationes de comparatione arcuum cur-
varum ellipticarum,” Novi Commentarii Academiae Seientiarum Petropolitanae 6, 1756-57

—————
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(1761), 58-84 (Opera omnia, ser. I, vol. 20, 80-107), he took up, in his own way, Fagnano’s
investigations on the arcs of the ellipse, the hyperbola, and the lemniscate. In chapter I he
sets up formulas on sums and differences of the ares of the ellipse, in chapter II of the hyper-
bola, then in chapter III he takes up analogous problems for the case of the lemniscate

(xz + yy)? = 2x — yy.

Theorem 4. If, in the lemniscatic curve that we have described here [Fig. 3] we
draw a chord CM = z and another one besides which is*

/l—zz
C’N—u= 1+ZZ’

then the arc CM is equal to the arc AN, or also: the arc CN is equal to the arc AM.

s
Mz
.

N

Fig. 3 c QA

The demonstration is like that of Fagnano in a similar case. In Corollary 1 Euler writes

_ . @ —ame _JI—R- = [l uu
CN =CA cAm o Corollary 2 he changes u = ,f3—— into z =, /3—— and

those expressions into wuzz + uu + zz = 1, “hence the points M and N can be inter-
changed, from which it follows that arc CM = arc AN as well as arc CN = arc AM.”

Corollary 3 states that, since C@, the abscissa of N, is equal to » / : +21m and QN, its

. 1 — uu u
. ordinate, to u 7 therefore CQ = TT=

AT = 2z = CM (AT is the tangent at 4).
Corollary 6 points out that the point O, which divides the whole quadrant C'4 into two
equal parts, also divides all arcs MV into two equal parts.

,@QN = , and hence QN/CQ = z, and

14z

Theorem 5. If in a lemniscatic curve with axis CA = 1 we construct [Fig. 4]
one chord CM = z and another arc besides which is

2z¢v'1 — zt
RO Al
CM2=u= T

then the arc CM? subtended by this chord u is twice the arc sublended by chord CM.

4 Compare Fagnano's case {7).

=
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2 Nz
N
M
Fig. 4 .
. . dzz — 42°
The demonstration leads, via uu = T332 through

_1—222—2"' —-—-__l+2zz—z" 4_1—6z‘+z8
V{1l — uu) = T+ V(I + uw) = T+ = V(I —ut) = T+ 27 :

and
2dz(l — 62* + 2°)
U =
(L+242 V({1 - 2%

de _ 2dz s
VT —ut V1 -2zt

dz du
or, since arc CM = J. ,arc CM? = J‘———a
VI =2t V1 = ut
arc OM?2 = 2arc CM + const.;

but, since z = 0 gives « = 0, the constant is zero, so that

arc CM? = 2arc OM.®

In Corollary 1 to Theorem 5 it is pointed out that, if

1l —=zz
CN_Jm'

a e —
CN“—I 222 — 2 _ [l —un

“T¥%z—-2t NT+u
then arc AN = arc CM, arc AN? = arc CM?, arc AN? = 2are AN.

8 Compare Fagnanc's case (10}, interchanging the lotters u and =.
8 Seo C. L. Siegel, ** Zur Vorgeschichte des Eulotschen Additionstheorems,” Sammelband

2u Ehren des 250. Geburtstages Leonhard Eulers, ed. K. Schréder {Akademie Verlag, Berlin,
1959), 315-317.
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In Corollary 4 it is pointed out that when M and N? coincide the arc CMNA is divided
into three equal parts. This leads to a fifth-degree equation,

(1 +2)(1 — pz + 22)(1 + pz + 22) =0,

1+ V8- VevE . _ [2V3

ith w = 1 4+ V3, hence CM = _av9
bty 2 1+ V3

Other corollaries give formulas for half a given arc and the fifth part of a quadrant; the
number of equal parts that can be computed is 27(1 4 2*).

Theorem 6. If the chord of a simple arc CM is z and the chord of the n-fold arc
OM? = u, then the chord of the (n + 1)-fold arc is
2 1 — un +u l— 2
14 un 1+ 2z

(1 — ww)(l — zz)
1=w T w + =)

CMr+1 =

In the paper “De integratione aequationis differentialis,” Novi Commentarii dcademiae
Scientiarum Petropolitanae 6, 1756-57 (1761), 37-57 (Opera omnia, ser. I, 20, 58-79),
printed in front of the previous paper but written somewhat later, Euler returned, in his
own way, to the principle expressed in “Fagnano's theorem,” and thereby clarified its
character. The full title of the paper reads in translation:

On the integration of the differential equation

mdr _  ndy
-2 Vi-g
. . mdz n dy . S
comparing the case first with that of T = T_y; which leads to msin~! z =

nein~!y + C (Euler writes 4 sin for sin=1).

Theorem. I therefore say that of the differential equalion

de dy
Vv1-zt V1t
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the complele integral equation is
xz + Yy + cexzyy = ¢ + 2n:y‘\/1_—?‘.
Demonstration. When we take this equation its differential will be
zdzx + ydy + ccxy{z dy + ydzx) = (zdy + ydz)v1 — ¢,
from which we obtain
dafw + coxyy — yV{T — 9] + dyfy + commy — V(T — )] = 0.

Solving the same equation we obtain

_aVi(l =) + V(i —at) _y\/(l—c"')-—c‘\/(l—y‘)
¥y= 1 + coxz and z = g .

If we now assign to the radical V{1 = =%) the sign -+, we must assign to the

radical V{1 — y*} the sign —, so that the value z = 0 gives in both cases the
value ¥ — ¢. Therefore we have

% + cezyy — yV{I — &8 = —cV({I — y'h

¥ + ccxzy — xV(1 — ¢*) = cV(1 — af).
When we substitute these values in the differential equation, we obtain
—cd::\/(_l_—T") + cdy\/fl_—_-a:“) =0,
or i

dx _ dy ) [

The integral of this differential equation is therefore
zz + yy + ccxxyy = cc + 2xyV (1 — ¢).
and, since it contains the arbitrary constant ¢, it is the complete integral. i
Q.E.D.

10. If, therefore, we have the equation

= __dy
Vi-z) vI-9)
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then the complete value of the integral in z is

oV ~¢Y) 2 eV — g
B 1+ coyy ’

which pesses into z = y if the constant ¢ vanishes, and if we place ¢ = 1 we
obtain

vl — %) 1 —yy
T = = ]
27T gy T+ yy

which are both particular values already found above [in §8]. From here we
obtain other particular values, but which lead to imaginaries. Thus if we take
¢ = 0 we obtain

V=1
r=—":
Y
and if we take cc = —1 we obtain
yy +1
yy—1

which also satisfy the equation in question.

19 EULER, LANDEN, LAGRANGE. THE METAPHYSICS OF THE
CALCULUS

Many eighteenth-century mathematicians tried to give a solid foundation to the calculus,
We present here three of these attempts. Euler, in his Institutiones calouli differentialis
(Saint Petersburg, 1755; Opera omnia, ser. I, vol. 10), gave his theory of the zeros of dif-
ferent orders, dz being, he said, equal to 0. John Landen (1719-1790), an English surveyor
and land agent, best remembered because of his contributions to the theory of elliptic

integrals, defined his derivative by the “residue ,,[f_—(z;) — i(xn)] » expanding f{z)ina
1= 0 Tpm=x

power series in z (concentrating on the binomial theorem). We f;nd ‘this in the Discourse
concerning the residual analysis (London, 1768). A few years later, Lagrange, in his “Note
sur la métaphysique du caleul infinitésimal,” Miscellanea Taurinensia 2 (1760-61), reprinted
in Ocuvres, V (1877), 697-509, gave what he thought to be an improvement on Landen’s
“algebraic” method, basing his whole comprehensive reevaluation of the principles of the
caleulus on the Taylor expansion. Lagrange later gave a full exposition in his Théorie des
fonctions analytiques (Paris, 1797), of which the second edition, revised (1813), is reprinted
in Oeuvres, IX (1881).

Euler’s method haa long been rejected, often with a kind of shounlder shrugging indicating
that even the great Euler sometimes slept. A more appreciative note has recently been
struck by A. P, Juschkewitch, “Euler und Lagrange iiber die Grundlagen der Analysis,”
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